N-doped graphene nanoribbons as efficient metal-free counter electrodes for disulfide/thiolate redox mediated DSSCs.
نویسندگان
چکیده
Nitrogen-doped graphene nanoribbons (N-GNRs) were prepared by thermal treatment of the as-zipped graphene oxide nanoribbons in NH3 gas. X-ray photoelectron spectroscopy (XPS) measurements revealed a high nitrogen content up to 6.5 atom% for the as-prepared N-GNRs. This, together with the high Brunauer-Emmett-Teller (BET) surface area of about 751 cm(2) g(-1), prompted us to use the N-GNR as the first low-cost, metal-free counter electrode for disulfide/thiolate redox mediated dye-sensitized solar cells (DSSCs). Compared with the widely-used platinum electrode, the newly-developed N-GNR counter electrode showed a dramatically improved power conversion efficiency for DSSCs based on the thiolate/disulfide redox shuttle. The observed superior cell performance was attributed to the enhanced charge transfer capability and electrocatalytic activity induced by N-doping of the graphene nanoribbon.
منابع مشابه
Nitrogen-doped graphene foams as metal-free counter electrodes in high-performance dye-sensitized solar cells.
Owing to their low-cost production, simple fabrication, and high energy conversion efficiency, dye-sensitized solar cells (DSSCs) have attracted much attention since Oregan and Gr tzel s seminal report in 1991. A typical DSSC device consists of a dye-adsorbed TiO2 photoanode, counter electrode, and iodide electrolyte. The counter (cathode) electrode plays a key role in regulating the DSSC devic...
متن کاملNotable catalytic activity of oxygen-vacancy-rich WO(2.72) nanorod bundles as counter electrodes for dye-sensitized solar cells.
For the first time, nonstoichiometric WO2.72 was used as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). Oxygen-vacancy-rich WO2.72 nanorod bundles with notable catalytic activity for triiodide and thiolate reduction were prepared in this study. The photovoltaic parameters of dye-sensitized solar cells (DSSCs) with WO2.72 nanorod bundles as CEs are superior compared with those o...
متن کاملHigh Electrocatalytic Activity of Vertically Aligned Single-Walled Carbon Nanotubes towards Sulfide Redox Shuttles
Vertically aligned single-walled carbon nanotubes (VASWCNTs) have been successfully transferred onto transparent conducting oxide glass and implemented as efficient low-cost, platinum-free counter electrode in sulfide -mediated dye-sensitized solar cells (DSCs), featuring notably improved electrocatalytic activity toward thiolate/disulfide redox shuttle over conventional Pt counter electrodes. ...
متن کاملThe Two-Dimensional Nanocomposite of Molybdenum Disulfide and Nitrogen-Doped Graphene Oxide for Efficient Counter Electrode of Dye-Sensitized Solar Cells
In this study, we reported the synthesis of the two-dimensional (2D) nanocomposite of molybdenum disulfide and nitrogen-doped graphene oxide (MoS2/nGO) as a platinum-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy were used to examine the characteristics o...
متن کاملFlexible and platinum-free dye-sensitized solar cells with conducting-polymer-coated graphene counter electrodes.
Dye-sensitized solar cells (DSSCs) have emerged as a high-efficiency, low-cost alternative to solid-state silicon solar cells. Typically, DSSCs are composed of a mesoporous titania nanocrystal electrode on a transparent conductive oxide (TCO) substrate with ruthenium-based sensitizers on the titania nanocrystals, platinum on the TCO substrate as a counter electrode, and iodine/iodide electrolyt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 16 شماره
صفحات -
تاریخ انتشار 2015